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Abstract

■ The speech signal is rife with variations in phonetic ambiguity.
For instance, when talkers speak in a conversational register, they
demonstrate less articulatory precision, leading to greater poten-
tial for confusability at the phonetic level compared with a clear
speech register. Current psycholinguistic models assume that
ambiguous speech sounds activate more than one phonological
category and that competition at prelexical levels cascades to
lexical levels of processing. Imaging studies have shown that
the left inferior frontal gyrus (LIFG) is modulated by phonetic
competition between simultaneously activated categories, with
increases in activation for more ambiguous tokens. Yet, these
studies have often used artificially manipulated speech and/or
metalinguistic tasks, which arguably may recruit neural regions
that are not critical for natural speech recognition. Indeed, a
prominent model of speech processing, the dual-stream model,

posits that the LIFG is not involved in prelexical processing in re-
ceptive language processing. In the current study, we exploited
natural variation in phonetic competition in the speech signal
to investigate the neural systems sensitive to phonetic competi-
tion as listeners engage in a receptive language task. Participants
heard nonsense sentences spoken in either a clear or conver-
sational register as neural activity was monitored using fMRI.
Conversational sentences contained greater phonetic competi-
tion, as estimated by measures of vowel confusability, and these
sentences also elicited greater activation in a region in the LIFG.
Sentence-level phonetic competition metrics uniquely correlated
with LIFG activity as well. This finding is consistent with the
hypothesis that the LIFG responds to competition at multiple
levels of language processing and that recruitment of this region
does not require an explicit phonological judgment. ■

INTRODUCTION

Speech recognition involves continuous mapping of
sounds onto linguistically meaningful categories that
help to distinguish one word from another (Liberman,
Cooper, Shankweiler, & Studdert-Kennedy, 1967). Psycho-
linguistic models of spoken word recognition share a com-
mon assumption that acoustic–phonetic details of speech
incrementally activate multiple candidates (phonetic cate-
gories and words in a language), which compete for selec-
tion and recognition (e.g., Gaskell & Marslen Wilson, 1997;
Norris, 1994; McClelland & Elman, 1986). Supporting this
assumption, human listeners show sensitivity to acoustic–
phonetic variation in spoken words to the extent that word
recognition is determined by not only the goodness of fit
between incoming speech and one particular lexical entry
but also the fit between speech and multiple phonetically
similar words as well (McMurray, Aslin, Tanenhaus, Spivey,
& Subik, 2008; Andruski, Blumstein, & Burton, 1994),
which jointly casts a gradient effect on word recognition
(e.g., Warren & Marslen-Wilson, 1987). Despite ample be-
havioral evidence, it is still poorly understood how the
brain resolves phonetic competition (PC; i.e., competition

between similar sounds like “cat” and “cap”) and arrives
at the correct linguistic interpretation. In this study, we
address this question by probing the neural sensitivity of
multiple brain regions in response to PC in connected
speech.

Recent research on the cortical organization of speech
perception and comprehension has generated a few hy-
potheses about the neural structures that support the
speech-to-meaning mapping. A prominent neuroanatom-
ical model, the dual-stream model (DSM) proposed by
Hickok and Poeppel (Hickok, 2012; Hickok & Poeppel,
2004, 2007), argues for two functionally distinct circuits
that are critical for different aspects of speech processing.
According to this model, cortical processing of speech
signal starts at the temporal areas (dorsal superior tem-
poral gyrus [STG] and mid-post STS) where the auditory
input is analyzed according to its spectro-temporal prop-
erties and undergoes further phonological processing.
From there, information about incoming speech is pro-
jected to other parts of the temporal lobe as well as fronto-
parietal regions via two separate streams, depending on the
specific task demands. The dorsal stream, which consists of
several left-lateralized frontal areas and the TPJ, is responsi-
ble for mapping speech sounds onto articulatory represen-
tations; the ventral stream, which includes bilateral middle1University of Rochester, 2University of Connecticut
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and inferior temporal lobes, is critical for mapping the
acoustic signal to meaning.

The involvement of the bilateral STGs and Heschl’s gyri
(HGs) in speech perception is uncontroversial. Involve-
ment of these areas is seen across a wide range of speech
perception and comprehension tasks such as passive
listening, segmentation, syllable discrimination/identi-
fication, sentence comprehension, and so forth (Chang
et al., 2010; Myers, 2007; Obleser, Zimmermann, VanMeter,
& Rauschecker, 2007; Davis & Johnsrude, 2003; see Leonard
& Chang, 2014; Rauschecker & Scott, 2009, for reviews). A
number of functional imaging studies have reported
intelligibility-sensitive regions within the temporal lobe
(Wild, Davis, & Johnsrude, 2012; Eisner, McGettigan,
Faulkner, Rosen, & Scott, 2010; Okada et al., 2010; Obleser,
Wise, Alex Dresner, & Scott, 2007; Scott, Rosen, Lang, &
Wise, 2006). Furthermore, the posterior STG in particular
exhibit fine-grained sensitivity to phonetic category struc-
ture (Chang et al., 2010; Myers, 2007), showing graded
activation that scales with the degree of fit of a token to
native language phonetic categories.

In contrast, the exact role of the frontal areas, and in
particular, the left inferior frontal gyrus (LIFG), in speech
perception has been vigorously debated. LIFG is recruited
under conditions of phonetic ambiguity, for instance,
when a token falls between two possible phonetic cate-
gories (e.g., midway between /da/ and /ta/; Rogers & Davis,
2017; Myers, 2007; Binder, Liebenthal, Possing, Medler, &
Ward, 2004). LIFG responses are often more categorical
(i.e., less sensitive to within-category variation) than re-
sponses in superior temporal areas (Chevillet, Jiang,
Rauschecker, & Riesenhuber, 2013; Lee, Turkeltaub,
Granger, & Raizada, 2012; Myers, Blumstein, Walsh, &
Eliassen, 2009), suggesting a role for these regions in
accessing phonetic category identity. In general, studies
have shown increased involvement of LIFG under con-
ditions of perceptual difficulty, including increased recruit-
ment when listeners are confronted with accented speech
(Adank, Rueschemeyer, & Bekkering, 2013), and increased
activity in noisy or degraded stimulus conditions (D’Ausilio,
Craighero, & Fadiga, 2012; Eisner et al., 2010; Binder et al.,
2004; Davis & Johnsrude, 2003). The general observation
that LIFG is recruited under these “unusual” listening con-
ditions has led to proposals that LIFG activity either (a) re-
flects executive or attentional control processes that are
peripheral to the computation of phonetic identity and/or
(b) only is necessary for speech perception under extreme
circumstances that involve significant perceptual difficulty.
Indeed, studies of people with aphasia with inferior frontal
damage have often struggled to find a speech-specific
deficit in processing, as opposed to a higher-level deficit
in lexical retrieval or selection (Rogalsky, Pitz, Hillis, &
Hickok, 2008). In the DSM, the LIFG, as part of the dorsal
stream, does not have an essential role in speech recogni-
tion (Hickok, 2012; Hickok & Poeppel, 2004, 2007). A
challenge to this view would be to discover that LIFG
is recruited for the type of PC that exists naturally in the lis-

tening environment (i.e., in the case of hypoarticulated
speech) even when intelligibility is high and using a task
that emphasizes lexical access rather than metalinguistic
identification, discrimination, or segmentation.
In this study, we investigated the neural organization

of speech processing with respect to the perception of
phonetic category competition, an integral component of
spoken word recognition. Specifically, we are interested
in the division of labor between temporal speech pro-
cessing areas such as STG and frontal areas such as LIFG
during the online processing of PC. It is of interest to note
that, when appearing in the context of real words, in-
creased PC unavoidably leads to increased lexical competi-
tion among phonologically similar words, as assumed in
current psycholinguistic models of spoken word recogni-
tion (e.g., Luce & Pisoni, 1998; McClelland & Elman,
1986) and evident in numerous behavioral studies
(McMurray et al., 2008; Allopenna, Magnuson, &
Tanenhaus, 1998). Given that our primary goal con-
cerns whether LIFG is recruited for speech recogni-
tion at all, we do not make a distinction between PC
and lexical competition at this point insofar as they are
both essential (sub)components of word recognition
processes. For now, with respect to our major hypothesis,
we use the term “PC” in reference to competition that exists
between similar sounds of a language (e.g., /i/ and /ɪ/), but
also any lexical competition that may ensue as activation
cascades from the phonetic level to the lexical level. We
hypothesized that LIFG is functionally recruited to resolve
PC as part of natural speech recognition. In addition to
recruitment of the LIFG for challenging listening condi-
tions, Hickok and Poeppel (2007) also noted that studies
that show prefrontal engagement in speech perception
have used sublexical tasks that do not require contact with
lexical representations and do not inform the neural reali-
zation of speech recognition, for which the ultimate target
is word meaning (although see Dial & Martin, 2017, for
evidence that sublexical tasks tap a level that is a precursor
to lexical processing in aphasia). In light of these discus-
sions, our foremost goal was to create a testing situation
that reflects challenges faced by listeners in the real world
yet allows comparison of brain activation patterns across
speech utterances varying in the degree of PC. To this
end, we used a sentence listening task, in which par-
ticipants were presented with a set of semantically anoma-
lous sentences, produced in two styles of natural speech:
clear speech (hyperarticulated, careful speech) versus con-
versational speech (hypoarticulated, casual speech).
A major part of real-world speech communication occurs

among friends, family, and coworkers where speech is
spontaneously and casually articulated, whereas a clear
speech register is often adopted in noisy acoustic envi-
ronments or when the addressed listeners have perceptual
difficulty (e.g., nonnative listeners or listeners with hearing
impairment). It is well documented that clear speech is
perceptually more intelligible relative to conversational
speech (see Smiljanic & Bradlow, 2010, for a review). A
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variety of acoustic factors have been associated with en-
hanced intelligibility in clear speech, including slower
speaking rate, higher pitch level, and greater pitch vari-
ation as well as spectro-temporal changes in the produc-
tion of consonants and vowels. In terms of PC, phonemes
vary in the degree to which they are confusable with other
tokens (Miller & Nicely, 1955). Vowels may be especially
vulnerable to confusion in English, given that English has
a dense vowel space, with vowel categories that overlap
acoustically (Hillenbrand, Getty, Clark, & Wheeler, 1995;
Peterson & Barney, 1952). For instance, the “point”
vowels (e.g., /i/ and /u/) are less likely to have near vowel
neighbors in F1 and F2 space, whereas mid and central
vowels (e.g., /ɪ/, /ǝ/, /ɛ/) are likely to fall in a dense vowel
neighborhood and thus be subject to increased compe-
tition from other vowels. Indeed, vowel space expansion
is reported to lead to significant improvements in intel-
ligibility and is a key characteristic of clear speech cross-
linguistically (Ferguson & Kewley-Port, 2007; Liu, Tsao, &
Kuhl, 2005; Smiljanić & Bradlow, 2005; Picheny, Durlach,
& Braida, 1985). In theory, vowel tokens that are more
dispersed in the acoustic–phonetic space will be more dis-
tant from acoustic territory occupied by competing vowels
and should elicit reduced PC (McMurray et al., 2008). We
thus expect clear speech to result in a lesser amount of PC
than conversational speech.
Hence, the stimulus set offers an opportunity to exam-

ine brain changes that are associated with naturally oc-
curring differences in phonetic confusability that exist
even in unambiguous speech. In addition, the current
experiment was designed to isolate the effect of PC on
brain activation. First, we chose a probe verification task
that does not require any metalinguistic decision about
the speech stimuli, nor does it impose a working mem-
ory load any more than necessary for natural speech rec-
ognition, to avoid additional load posed by sublexical
identification tasks. Second, sentences were semantically
anomalous, which avoids evoking extensive top–down
influences from semantic prediction (Davis, Ford, Kherif,
& Johnsrude, 2011). This manipulation is in place to
isolate effects of phonetic/ lexical ambiguity resolution
from the top–down effects of semantic context. Although
LIFG is suggested to support both semantic and syn-
tactic processing of speech sentences (see Friederici,
2012, for a review), the two sets of speech stimuli are
identical on these dimensions and differ only in their
acoustic–phonetic patterns. Third, in light of previous
findings of the intelligibility-related activation in IFG,
especially for degraded speech or noise-embedded
speech, we equated the auditory intelligibility between
the two sets of speech stimuli: clear versus conversational
speech (see details under Methods).
By comparing naturally varying PC present in different

speech registers, we can investigate PC in a situation that
reflects the perceptual demands of the real-life environ-
ment. We predicted that increased PC would result in
increased activation in the LIFG driven by additional de-

mands on the selection between activated phonetic cat-
egories. We thus expect greater activation in the LIFG for
conversational speech relative to clear speech. We pre-
dicted an opposite pattern in the temporal lobe given
findings that superior temporal lobe encodes fine-grained
acoustic detail. Because clear speech is expected to con-
tain speech tokens that have better goodness of fit to
stored phonological representations (Johnson, Flemming,
& Wright, 1993), we expect the temporal areas to be more
responsive to clear speech relative to conversational
speech (Myers, 2007). Furthermore, by characterizing the
degree of potential PC in each sentence, we can askwhether
natural variability in PC is associated with modulation of
activity in LIFG.

METHODS

Participants

Sixteen adults (eight women) between the ages of 18 and
45 years from the University of Connecticut community
participated in the study. One female participant was ex-
cluded from the behavioral and fMRI analyses because of
excessive head movement in multiple scanning sessions,
leaving n = 15 in all analyses. All participants were right-
handed native speakers of American English, with no re-
ported hearing or neurological deficits. Informed consent
was obtained, and all participants were screened for ferro-
magnetic materials according to guidelines approved by
the institutional review board of University of Connecticut.
Participants were paid for their time.

Stimuli

Ninety-six semantically anomalous sentences (consisting
of real words) were adapted from Herman and Pisoni
(2003) and were used in both the behavioral and fMRI
testing sessions. All sentences were produced by the
second author, a female native speaker of English. Three
repetitions of each sentence were recorded in each
speaking style: clear speech and conversational speech.
Recordings were made in a soundproof room using a
microphone linked to a digital recorder, digitally sampled
at 44.1 kHz and normalized for a root mean square
amplitude of 70 dB of sound pressure level. The tokens
were selected to minimize the duration differences be-
tween the two speaking styles. Detailed acoustic analyses
were conducted in Praat (Boersma & Weenink, 2013) on
the selected sentence recordings. Consistent with past
research, preliminary analyses revealed many acoustic
differences between clear and conversational speech,
with differences manifested in speaking rate, pitch
height, and variation, among other characteristics. Clear
and conversational sentence sets were equated on three
measures—duration, mean pitch, and standard deviation
of F0 variation within a sentence—using a resynthesis of
all sentences and were implemented in the GSU Praat
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Tools (Owren, 2008).1 After equating the two sets of
sentences on these measures, 84 sentences were selected
as critical sentences and 12 sentences served as fillers
(presented as target trials) for the in-scanner listening
task. The critical sentences ranged in length between
1322 and 2651 msec, with no mean difference between
the two speaking styles (clear vs. conversational: 1986 vs.
1968 msec, respectively; t(83) = 1.24, p = .22); filler sen-
tences had a mean duration of 2000 msec (SD= 194 msec).

Stimulus Properties

A number of acoustic and lexical properties of each sen-
tence were measured for experimental control and for
use of the fMRI analysis. First, we analyzed all stressed
vowels (Table 1). Critically, the mean F1 and F2 of all
vowels, with the exception of /ɛ/ and /ʌ/, differed signifi-
cantly between the two speaking styles. In general, vowel
space was more expanded in clear speech relative to con-
versational speech, and there was considerably greater
overlap between vowel categories in conversational
speech (see Figure 1A).

To estimate the degree of PC inherent in each trial
sentence, an additional analysis was performed on each
stressed vowel token. Although clear sentences generally
differ from conversational sentences on several phonetic
dimensions (e.g., longer closure durations for voiceless
stops, more release bursts for stops), we chose vowel
density as a way to approximate the PC in each sentence,
given that multiple vowel measurements could be made
in every sentence. We adopted a measure (elsewhere
termed “repulsive force”; see McCloy, Wright, & Souza,
2015, and Wright, 2004, for details; here called “PC”) that
represents the mean of the inverse squared distances
between this vowel token and all other vowel tokens that

do not belong to the same vowel category. A token that is
close to only vowels of the same identity (e.g., an /i/
vowel surrounded only by other /i/ tokens and far away
from other vowel types) would have lower values on this
measure and would be deemed to have low PC, whereas
a token surrounded by many vowels of different identi-
ties (e.g., an /ɪ/ with near-neighbors that are /e/ or /æ/)
would score high on measures of PC (Figure 1C). Given
the same target vowels across clear and conversational
sentences, vowels from clear sentences had significantly
lower scores (t(392) = 7.18, p < .0001) on measures of
PC (Figure 1B), although there was substantial overlap in
these measures.
As noted in the Introduction, for any given word,

changes in PC inevitably cascade to the lexical level and
create competition among phonologically similar words.
Although it is not our primary interest to distinguish be-
tween neural activation patterns responsive to PC versus
that to lexical competition, it is possible to gain some in-
sight into this question by linking BOLD signal to varia-
tion in the lexical properties. To this end, we calculated
lexical frequency (LF) and neighborhood density (ND)
for each content word in the critical sentences. Sentence
level measures were then obtained by averaging across all
content words within a sentence. Neither of these lexical
measures correlated significantly with the PC values ( ps >
.10) at the sentence level.

Stimulus Norming

A pilot study was conducted to ensure that the manipu-
lated sentences were highly intelligible and sounded
natural. An independent group of 10 native English lis-
teners transcribed all sentences, with each participant
transcribing half of the clear sentences and half of the

Table 1. Acoustic Analysis of the First and Second Formants of Stressed Vowels in Clear and Conversational Speech Sentences

Vowel
No. of
Tokens

F1 Mean (SD) in Hz F2 Mean (SD) in Hz
F1
Diff.

F2
Diff.

Paired t Test (Two-Tailed)

Conversational Clear Conversational Clear F1 F2

i 50 380 (35) 347 (42) 2480 (171) 2588 (141) −34 108 p < .00001 p < .00001

ɪ 43 514 (52) 495 (61) 1962 (292) 2042 (350) −19 80 p < .01 p < .05

e 46 517 (51) 485 (61) 2260 (171) 2390 (233) −32 130 p < .001 p < .00001

ɛ 52 659 (93) 651 (92) 1835 (203) 1809 (283) −8 −26 p = .45 p = .39

æ 49 738 (168) 803 (141) 1804 (259) 1821 (176) 65 18 p < .00001 p = .54

ʌ 27 665 (87) 683 (92) 1576 (145) 1565 (129) 18 −11 p = .17 p = .60

ɑ 35 737 (111) 781 (104) 1399 (167) 1320 (149) 44 −78 p < .05 p < .01

ɔ 32 644 (126) 666 (119) 1195 (192) 1071 (158) 23 −124 p < .05 p < .00001

o 31 530 (54) 510 (64) 1291 (291) 1105 (248) −20 −186 p < .05 p < .00001

u 28 401 (44) 378 (45) 1833 (324) 1596 (312) −23 −237 p < .05 p < .00001

Group means and standard deviations (in parentheses) are presented for F1 and F2 separately.
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conversational sentences, such that no sentence was re-
peated within a participant. All participants reported the
sentences to be natural and of high perceptual clarity in
a postexperiment survey. The critical sentences were
equated on their intelligibility, as assessed by listeners’
transcription accuracy (clear vs. conversational: 93.7%
(SE = 0.8%) vs. 92.4% (SE = 0.8%), respectively; t(83) =
1.45, p = .15). None of the 10 participants participated
in the main experiment (fMRI and postscanning behavioral
tasks).

fMRI Design and Procedure

The fMRI experiment consisted of six separate runs pre-
sented in a fixed order across participants, with trials
within the runs presented in a fixed, pseudorandom order.
The 84 clear and conversational sentences and 12 target
trials (filler sentences) were evenly distributed in a non-
repetitive fashion across the first three runs and were re-
peated with a different set of order in the last three runs.
Each run consisted of 14 clear, 14 conversational, and 4 tar-

get trials. For each critical sentence, if the clear version was
presented in the first three runs, then the conversational
version appeared in one of the last three runs and vice
versa. Stimuli were delivered over air-conduction head-
phones (Avotech Silent Scan SS-3300, Stuart, FL) that pro-
vide an estimated 28 dB of passive sound attenuation.
Stimuli were assigned to SOAs of 6 and 12 sec. Accuracy
data were collected for the infrequent target trials. Stimulus
presentation and response collection were performed
using PsychoPy v1.83.01.

Participants were told to pay attention to the screen
and the auditory stimuli and to keep their heads as still
as possible. To focus participants’ attention on the con-
tent of the auditory stimuli, on target trials, a probe word
appeared on the screen at the offset of the auditory sen-
tence. Participants were asked to judge whether that
word had appeared in the previous sentence and indi-
cated their response via an MRI-compatible button box
(Current Designs, 932, Philadephia, PA) held in the right
hand. For half of the target trials, the target word was con-
tained in the previous sentence. Imaging data from target

Figure 1. Acoustic measures for content words taken from clear and conversational sentences. (A) Geometric centers for vowels from clear
(connected by solid lines) and conversational (dotted lines) sentences. (B) Probability density function for PC measures on vowels drawn from clear
(solid line) and conversational (dotted line) sentences. Units are expressed in terms of the log-transformed mean of the inverse squared distances
to all tokens that are not of the same type, with lower values showing fewer different-neighbor tokens (lower competition) and positive values
indicating more different-neighbor tokens (higher competition). (C) Individual tokens from clear (left) and conversational (right) sentences, coded
according to the degree of PC each token is subject to, from low (blue) to high (red).
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trials were modeled in the participant level analyses but
did not contribute to the group level analysis.

fMRI Acquisition

Anatomical and functional MRI data were collected with a
3-T Siemens Prisma scanner (Erlangen, Germany). High-
resolution 3-D T1-weighted anatomical images were
acquired using a multiecho magnetization prepared rapid
gradient echo sequence (repetition time [TR] = 2300 msec,
echo time = 2.98 msec, inversion time = 900 msec, 1-mm3

isotropic voxels, 248 × 256 matrix) and reconstructed into
176 slices. Functional EPIs were acquired in ascending, inter-
leaved order (48 slices, 3-mm thick, 2-mm2 axial in-plane res-
olution, 96 × 96 matrix, 192-mm3 field of view, flip angle =
90°) and followed a sparse sampling design: Each functional
volume was acquired with a 3000-msec acquisition time,
followed by 3000 msec of silence during which auditory
stimuli were presented (effective TR = 6000 msec). Stimuli
were always presented during the silent gap (see Figure 2A).

fMRI Data Analysis

Images were analyzed using AFNI (Cox, 1996). Prepro-
cessing of images included transformation from oblique
to cardinal orientation, motion correction using a six-
parameter rigid body transform aligned with each partic-
ipant’s anatomical data set, normalization to Talairach
space (Talairach & Tournoux, 1988), and spatial smooth-
ing with a 4-mm Gaussian kernel. Masks were created
using each participant’s anatomical data to eliminate
voxels located outside the brain. Individual masks were

used to generate a group mask, which included only
those voxels imaged in at least 14 of 15 participants’ func-
tional data sets. The first two TRs of each run were re-
moved to allow for T1 equilibrium effects. Motion and
signal fluctuation outliers were removed following stan-
dard procedures.
In-scanner behavioral results indicated that all par-

ticipants responded to all target trials and there were
no inadvertent button presses in response to clear or
conversational sentences. We generated time series vec-
tors for each of the three trial conditions (clear, conver-
sational, and target) for each participant in each run.
These vectors contained the onset time of each stimulus
and were convolved with a stereotypic gamma hemo-
dynamic function. The three condition vectors along with
six additional nuisance movement parameters were sub-
mitted to a regression analysis. This analysis generated
by-voxel fit coefficients for each condition for each
participant.
The above by-participant by-voxel fit coefficients were

taken forward to group-level t test (@3dttest++, AFNI)
analysis, comparing clear speech with conversational
speech. We masked the t test output with a small volume-
corrected groupmask that included anatomically defined re-
gions that are typically involved in language processing:
bilateral IFG, middle frontal gyrus (MFG), insula, STG, HG,
superior frontal gyrus, middle temporal gyrus, supramargi-
nal gyrus (SMG), inferior parietal lobule (IPL), superior
parietal lobe (SPL), and angular gyrus (AG). Cluster level
correction for multiple comparisons was determined by
running 10,000 iterations of Monte Carlo simulations
(@3dClustSim, AFNI) on the small-volume-corrected group

Figure 2. (A) Schematic
showing stimulus presentation
timing with respect to EPI scans.
(B) Postscanning behavioral
study schematic. Listeners
perform a visual target
detection task, searching for
a red square in the array.
Simultaneously, they hear a
sentence. Immediately after the
sentence, participants see a
visual probe on the screen and
are asked to indicate whether
that word was in the sentence.
Then, they are queried about
the presence of the visual
target. (C) Example arrays for
the visual target detection.
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mask. Specifically, we used -acf option in 3dFWHMx and
3dClustSim (AFNI) to estimate the spatial smoothness and
generate voxelwise and clusterwise inference. These
methods, consistent with recent standards for second-level
correction (Eklund, Nichols, & Knutsson, 2016), estimated
the spatial autocorrelation function of the noise using a
mixed autocerralation function model instead of the pure
Gaussian-shaped model and have been reported to be
effective in overcoming the issue of high-false-positive
rates in cluster-based analysis. Data were corrected at a
cluster level correction of p < .05 (voxel level threshold
of p < .005, 59 contiguous voxels).2,3

A second analysis was conducted to search for relation-
ships in the hemodynamic response and by-item mea-
sures of PC, reaction time (RT), ND, and LF. PC, ND,
and LF measures were calculated for each sentence using
methods described above (Stimulus properties section).
By-item mean RT was estimated for each sentence in the
postscanning behavioral test. For this analysis, clear and
conversational tokens were collapsed, and relationships
between hemodynamic response to each sentence and
that sentence’s by-item factors were analyzed in one
analysis. Factors were mean-centered by run, and the
stereotypic hemodynamic response was entered together
with an amplitude-modulated version of this stereotypic
time course. This analysis allows us to look for regions in
which the by-item measures correlate with by-trial dif-
ferences in BOLD above and beyond those accounted for
by the base time course. By-participant beta coefficients
were extracted, entered into a t test versus zero via
3dttest++, and corrected for multiple comparisons using
the same method as the standard group-level analysis.

Postscanning Behavioral Design and Procedure

After scanning, the same group of participants completed
a 20- to 30-minute behavioral experiment to test by-
participant sensitivity to the clear versus conversational
sentence distinction. During this test, participants com-
pleted a probe verification listening task concurrently
with a visual search task (see Figure 2B for a schematic).
In a behavioral pilot study where the probe verification
listening task was used in isolation, standard behavioral
measures (RT and accuracy) revealed no differences in
the responses to clear versus conversational speech. This
result suggests that the variation in PC may be too subtle
to transform into observable behavioral changes. One
way of revealing subtle differences in processing load is
to increase the overall cognitive load. Previous findings
have shown that a higher cognitive load degrades fine
acoustic–phonetic processing of speech signal and causes
poorer discrimination between similar speech tokens,
especially for tokens near the category boundaries (e.g.,
Mattys & Wiget, 2011; Mattys, Brooks, & Cooke, 2009).
In particular, increased domain-general cognitive effort
(i.e., the presence of a concurrent nonlinguistic task) de-
teriorates the precision of acoustic–phonetic encoding, re-

sulting in more mishearing of words (Mattys, Barden, &
Samuel, 2014). In light of such findings, we reasoned that
the inclusion of a concurrent cognitive task would nega-
tively affect listeners’ differentiation of subtle phonetic
variation, especially where the amount of PC is high (con-
versational). A second behavioral pilot study confirmed
this hypothesis. We thus kept the visual search task as a
secondary task in the postscanning behavioral test.

Speech stimuli for the listening task were the 96 sen-
tences used in the imaging session. The test was pre-
sented using E-Prime 2.0.10 (Psychology Tools, Inc.,
Pittsburgh, PA). On each trial, an auditory sentence was
delivered via headphones, and a visual word was pre-
sented at the offset of the sentence. Participants were
asked to listen carefully to the sentence and verify whether
the visual word matched part of the auditory sentence
with a “yes” or “no” button press. For half of the trials, the
visual word was part of the auditory sentence. Coincident
with the onset of the auditory sentence, participants saw
a visual array each consisting of a 6-column × 6-row grid.
In half of the trials, 18 black squares and 18 red triangles
were randomly arranged; in the other half of the grids,
there was a red square with its position randomly as-
signed (see examples in Figure 2C). After the sentence
probe, participants were asked to press the “yes” button
if a red square was present and the “no” button if other-
wise. After a practice phase with each task separately,
participants were instructed to complete the two tasks
simultaneously. For both tasks, they were instructed to
respond with two labeled buttons “yes” and “no” as quickly
as possible. Accuracy and RT data were collected for both
tasks.

RESULTS

Postscanning Behavioral Data Analysis and Results

The visual search task was administered solely to impose
a cognitive load on the participants, and the results did
not reveal any differences as a function of the sentence
types. We thus omitted the results for this task. We ana-
lyzed the accuracy and RT data separately for the 84 crit-
ical sentences in the listening task. Participants showed
no significant difference in accuracy between the clear
(M = 0.90, SD = 0.06) and conversational sentences (M =
0.90, SD=0.06; F(1, 14) = 0.085, p= .78). RT results of cor-
rect trials revealed a main effect of condition (F(1, 14) =
4.435, p = .05), with faster responses to clear sentences
(M = 978 msec, SD = 180 msec) than to conversational
sentences (M = 994 msec, SD = 192 msec). As expected,
although both types of sentences were highly intelligible,
the RT differences indicated greater perceptual difficulty
for the conversational sentences compared with the clear
sentences. Note that the participants already heard the
whole set of sentences in the scanner before they were
tested in this listening task. If anything, repetition of these
sentences should attenuate any perceptual difference
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between clear versus conversational speech. To factor out
changes in activation due to differences in perceptual
difficulty, we calculated the mean RT of each condition
for each participant and included them as covariates in
the group analysis of imaging data.

Imaging Results

Comparison of clear trials with conversational trials
(Figure 3) showed differential activation in functional
clusters within LIFG (pars triangularis and pars opercu-
laris), left IPL (LIPL) extending into SPL, left posterior
STG, and a small portion of HG (see Table 2). Specifical-
ly, greater activation was found for clear speech than for
conversational speech in the left STG, extending into HG,
whereas the opposite patterns were observed in LIFG
and IPL regions.

A secondary analysis was conducted to examine several
variables that differ across sentences. In particular, we
wished to examine the hypothesis that PC (which is hy-
pothesized to be greater for conversational than for clear
sentences) drives activation in the frontal regions. A wide
variety of regions showed increases in activation as PC
increased, including bilateral IFG (pars triangularis and
pars opercularis) extending on the left into the MFG

(Table 3, Figure 4). Notably, there was overlap between
this activation map and that identified by the conver-
sational versus clear contrast in LIFG, pars triangularis
(43-voxel overlap), and LIPL (43-voxel overlap). Of inter-
est, there was no correlation between BOLD responses
and PC within the left or right superior temporal lobes.
A similar analysis was conducted using by-item RT esti-
mates but showed no significant correlation at the cor-
rected threshold. Finally, to rule out the possibility that
the areas that correlated with PC are explained by the over-
all “difficulty” of stimuli, PC was entered into the same anal-
ysis with RT. This did not change the overall pattern of
results, which is perhaps unsurprising given that by-item
PC measures show no significant correlation with RT
(r = .08, p > .10). Taken together, this suggests that PC
measures account for variance that is not shared with RT.4

DISCUSSION

Using a receptive listening task that requires no metalin-
guistic judgment, we have shown that LIFG is recruited
for resolving PC in speech recognition. First, LIFG
showed greater activation for conversational speech,
which presents more reduced forms of articulation and,
consequently, a greater level of PC than clear speech.
Increased activity for increased PC was also found in
the inferior parietal cortex. Importantly, the opposite pat-
tern was observed within the superior temporal lobe,
demonstrating a functional dissociation between the
frontal–parietal regions and temporal language regions.
Second, by associating trial-by-trial variability in the
amount of PC, as well as lexical properties of words
within a sentence with BOLD signal changes, we found
that variation in activation within bilateral inferior frontal
areas was predicted by sentence-to-sentence changes in
PC. A similar pattern was observed in the left inferior
parietal area and bilateral MFGs. Temporal regions
showed no such selective sensitivity to PC on a trial-by-
trial basis. Crucially, the modulatory effect of PC on LIFG
activity persisted after controlling for difficulty (measured
by RT in the postscanning task) and other lexical factors

Figure 3. Blue shows areas that show greater activation for
conversational speech than clear speech; yellow shows areas that are
greater for clear speech than conversational speech. Clusters at a
corrected p< .05 (voxelwise p< .005, minimum= 59 voxels per cluster).

Table 2. Results of t Test Comparing BOLD Responses to Clear and Conversational Sentences

Area Cluster Size in Voxels

Maximum Intensity Coordinates

Maximum t Valuex y z

Conversational > clear

LIPL, left SPL 109 −37 −51 56 3.86

LIFG (pars triangularis, pars opercularis) 133 −39 21 4 3.44

Clear > conversational

Left posterior STG, left HG 78 −45 −23 10 3.97

Clusters corrected at the voxel level of p < .005, with 59 contiguous voxels and a corrected threshold of p < .05.
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(frequency and frequency-weighted ND). The results
provide clear evidence that LIFG activity is driven by
the confusability between speech sounds, suggesting a
critical role in the resolution of phonetic identity in a nat-
uralistic, receptive speech task. Below, we discuss the
separate functional roles of frontal and temporo-parietal
regions in a highly distributed network that map sounds
onto words.
A number of studies have identified a critical role of

LIFG in the encoding of phonetic identity (e.g., Myers
et al., 2009; Poldrack et al., 2001). Because many of these
studies have employed sublexical tasks such as category
identification, discrimination, or phoneme monitoring,
what remains debatable is whether the recruitment of
LIFG is essential in natural speech recognition. The
DSM, for instance, has argued explicitly that these sub-
lexical tasks engage functions that are dissociable from
spoken word recognition; hence, they are not relevant
for the discussion on the neural bases of speech recogni-
tion, for which explicit attention to sublexical units is not
required (Hickok & Poeppel, 2007). In this study, we
overcome such task-dependent confounds by utilizing a
sentence listening task in which listeners perceive natural
continuous speech and, presumably, access the mental
lexicon as they do in normal speech communication, a

function that has been ascribed to the ventral pathway
that does not include frontal regions in the DSM.

Another functional role associated with LIFG in the
literature is that it facilitates effortful listening (Adank,
Nuttall, Banks, & Kennedy-Higgins, 2015; Eisner et al.,
2010; Obleser, Zimmermann, et al., 2007). Unlike past
studies that have shown increased LIFG activity in the
presence of degraded listening conditions or an ambigu-
ous sound signal (e.g., accented speech), we exposed lis-
teners to highly intelligible speech in two types of
typically heard registers: clear and conversational. As
shown by corpus studies (Johnson, 2004), conversational
speech is a frequently (arguably, the most frequently)
heard speaking register in daily life and exhibits massive
reduction and hypoarticulation of pronunciations. Vowel
reduction in conversational speech is a particularly widely
acknowledged and well-studied phenomenon (e.g., Gahl,
Yao, & Johnson, 2012; Johnson et al., 1993). We argue that
the PC that listeners are exposed to in the current study
closely resembles the phonetic ambiguity that listeners
hear in daily life, with the caveat that the lack of semantic
context in the current study prevents top–down resolution
of ambiguity. In this sense, resolution of PC is viewed as an
inherent part of speech perception, rather than an unusual
or exceptional case.

It is of theoretical interest to ask whether the LIFG ac-
tivation in the current study reflects a specific function in
the processing of phonetic categories or a more general
role in resolving conflict between competing lexical or se-
mantic alternatives. As noted in the Introduction, a direct
consequence of competition at the phonological level is
competition at the lexical level (McMurray et al., 2008;
Andruski et al., 1994). Indeed, lexical factors (e.g., word
frequency and neighborhood density) that have direct con-
sequences on the dynamics of lexical access (Luce & Pisoni,
1998) are reported tomodulate activity in a number of brain
regions, spanning across frontal–temporal–parietal path-
ways (Zhuang, Tyler, Randall, Stamatakis, &Marslen-Wilson,
2014; Minicucci, Guediche, & Blumstein, 2013; Zhuang,
Randall, Stamatakis, Marslen-Wilson, & Tyler, 2011; Okada

Table 3. Results of the Amplitude-modulated Analysis

Area
Cluster Size
in Voxels

Maximum Intensity Coordinates

Maximum t Valuex y z

LIFG, pars opercularis, pars triangularis 160 −49 7 26 2.49

LMFG 139 −39 47 16 5.22

LIFG pars triangularis 133 −37 25 6 9.34

RIFG pars triangularis, pars opercularis 85 51 15 4 5.82

LIPL 80 −31 −51 40 7.11

RMFG 66 37 49 14 5.21

In the clusters reported above, by-item variability in PC correlated significantly with activation beyond that attributable to the event time course. No
clusters correlated significantly with RT at this threshold. Clusters were corrected at p < .05 (voxel level p < .005, 59 contiguous voxels).

Figure 4. Results of the amplitude-modulated analysis, showing areas
in which by-trial activation fluctuates with by-trial measures of PC.
All regions show a positive correlation between PC and activation.
Clusters at a corrected p< .05 (voxelwise p< .005, minimum= 59 voxels
per cluster).
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&Hickok, 2006; Prabhakaran, Blumstein, Myers, Hutchison,
& Britton, 2006). In particular, LIFG shows elevated activity
for words with a larger phonological cohort density and is
thus argued to be responsible for resolving increased
phonological–lexical competition (Zhuang et al., 2011,
2014; Minicucci et al., 2013; Righi, Blumstein, Mertus, &
Worden, 2010; Prabhakaran et al., 2006). Of particular
interest, Minicucci et al. (2013) manipulated pronuncia-
tions of a word such that it sounded more similar to a
phonological competitor. For instance, reducing the VOT
of /t/ in the word “time” makes it more similar to “dime.”
They found greater responses in LIFG for modified pro-
ductions that lead to greater activation for a phonological
competitor than when the modification did not lead to
greater lexical competition. Similarly, Rogers and Davis
(2017) showed that LIFG was especially recruited when
phonetic ambiguity led to lexical ambiguity, for example,
when listeners heard a synthesized blend of two real
words (e.g., “blade”–“glade”) compared with a blend of two
nonwords (e.g., “blem”–“glem”). In summary, evidence
is consistent with the interpretation that PC, especially as it
cascades to lexical levels of processing, modulates frontal
regions.

Although we did not observe any modulatory effect
of phonological neighborhood structure on the activity
in LIFG or any other typically implicated areas, a theo-
retically interesting possibility is that LIFG (or its sub-
divisions) serves multiple functional roles that help to
resolve competition across various levels of linguistic
processing. In this study, the posterior and dorsal regions
of LIFG (pars opercularis and pars triangularis; ∼BA 44/45)
were modulated by PC. These regions have been posited
to serve a domain-general function in competition reso-
lution (see Badre & Wagner, 2007; Thompson-Schill,
Bedny, & Goldberg, 2005, for reviews), with evidence
coming predominantly from studies that investigate com-
peting scenarios in semantic–conceptual representations.
In a few recent studies on lexical competition, pars tri-
angularis (BA 45) has consistently been shown to be sensi-
tive to phonological cohort density (Zhuang et al., 2011,
2014; Righi et al., 2010). Our findings suggest that, to the
extent that LIFG is crucial for conflict resolution, this func-
tion is not limited to higher-level language processing. In
light of past research on phonetic category encoding using
other paradigms (e.g., Myers et al., 2009), we take the cur-
rent results as strong evidence for a crucial role of posterior
LIFG regions in the phonological processing of speech
sounds. Notably, we did not find any modulatory effects
of PC on other language regions (left-lateralized middle
temporal gyrus and STG) that have been reported to be
responsive to word frequency and/or neighbor density ma-
nipulations (Kocagoncu, Clarke, Devereux, & Tyler, 2017;
Zhuang et al., 2011; Prabhakaran et al., 2006). Therefore, it
is plausible that different neural networks are engaged for
the resolution of phonetic versus lexical competition. We
suggest that it is particularly important for future research
to determine the extent to which the recruitment of LIFG

in resolving PC is dissociable from lexical and/or semantic
selection and from more general-purpose mechanisms for
competition resolution.
In addition to LIFG, we found a relationship between

PC and activation in LIPL. Not only did this region show a
conversational > clear pattern, its activation was gradi-
ently affected by the degree of PC, as shown by the
amplitude-modulated analysis. Anatomically and func-
tionally connected with Broca’s area (see Hagoort, 2014;
Friederici, 2012, for reviews), LIPL has been reliably impli-
cated in phonological processing, showing a similar pattern
to that of LIFG across a range of speech perception tasks
(Turkeltaub & Coslett, 2010; Joanisse, Zevin, & McCandliss,
2007). At the lexical level, this region has been hypothe-
sized to be the storage site for word form representations
(Gow, 2012) and has emerged in studies that examined
lexical competition effects in spoken word recognition
and production (Peramunage, Blumstein, Myers, Goldrick,
& Baese-Berk, 2011; Prabhakaran et al., 2006). The shared
similarities between left-lateralized IFG and IPL in response
to changes in PC across sentences are highly compatible
with a frontal–parietal network that is often engaged in
sound-to-word mapping processes.
It is worth noting that the use of semantically anoma-

lous sentences could have increased working memory
demands and consequentially engaged IFG and IPL to a
greater extent, relative to the listening of semantically
meaningful sentences (e.g., Eriksson, Vogel, Lansner,
Bergström, & Nyberg, 2015; Venezia, Saberi, Chubb, &
Hickok, 2012; Buchsbaum et al., 2011; Rogalsky & Hickok,
2011; Buchsbaum & D’Esposito, 2008; Smith, Jonides,
Marshuetz, & Koeppe, 1998). However, because the same
set of sentences was used for clear and conversational
speech, an overall elevated level of working memory de-
mands associated with semantic anomaly cannot explain
the recruitment of LIFG for clear versus conversational
sentences. Another concern is that working memory load
may increase with the amount of PC on a trial-by-trial
basis. Our data cannot rule out the possibility that the
working memory systems domodulate as a function of var-
iability in PC, for example, by maintaining the acoustic–
phonetic information until the category membership is re-
solved. For now, whether this is true is inconsequential to
our interpretation that left frontal and parietal regions are
involved in processing PC. Workingmemorymay be one of
the core cognitive processes on which the resolution of PC
is dependent. A theoretically relevant question for future
studies is to what extent the engagement of the identified
regions is functionally separable from their role in support-
ing domain-general working memory components (see
Smith & Jonides, 1997, 1998) that are not required for
the resolution of PC.
Similarly, it is possible that the absence of reliable seman-

tic cues may push listeners to use bottom–up, phonetic
pathways to a greater degree than in typical language com-
prehension, much in the same way that listeners in noisy
conditions show greater use of top–down information,
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and listeners with compromised hearing benefit more
from semantic context than typical-hearing individuals
(e.g., Lash, Rogers, Zoller, & Wingfield, 2013). Although
semantically anomalous sentences are rare in the listening
environment, challenging listening conditions—that is,
hearing fragments of sentences and speech occluded inter-
mittently by noise—are not rare. All of these conditions
weaken available semantic and contextual cues available
to the listener. It is an empirical question whether these
same effects would emerge in a more predictive and
naturalistic context, a topic worthy of future study. How-
ever, to the extent that these results replicate findings
from several different task paradigms (Rogers & Davis,
2017; Myers, 2007), there is no inherent reason to
suspect that the patterns seen here are specific to anoma-
lous sentences.
Interestingly, in comparison with the activation pat-

terns in frontal–parietal regions, the left STG and HG ex-
hibited a greater response for clear speech than for
conversational speech. With respect to the perception
of specific speech sounds, studies have shown graded
activation in bilateral STG as a function of token typicality
as members of a particular sound category (Myers et al.,
2009; Myers, 2007). To the extent that, overall, carefully
articulated speech tokens are further away from category
boundaries and better exemplars (see Figure 1) com-
pared with casually articulated speech tokens, greater
activity in response to clear speech was expected.
Another interesting finding is that, beyond the typically

implicated fronto-temporo-parietal network in the left
hemisphere, we also observed modulatory effects of PC
in the right IFG (RIFG). This finding is consistent with
previous reports on the effects of PC in phonetic catego-
rization tasks. In Myers (2007), bilateral IFG areas show
increased activation to exemplar pairs of speech sounds
that straddle across a category boundary (greater compe-
tition) versus those that are within a category (lesser
competition). Beyond speech and language processing,
bilateral IFGs are implicated in tasks that broadly engage
cognitive control resources (e.g., Aron, Robbins, & Poldrack,
2004, 2014; Levy & Wagner, 2011; Badre & Wagner, 2007;
Novick, Trueswell, & Thompson-Schill, 2005). It is possible
that phonetic/lexical competition recruits domain-general
cognitive control mechanisms that are more bilaterally or-
ganized. This does not mean that LIFG and RIFG are en-
gaged for the same purpose. In particular, greater RIFG
activity has been suggested to reflect increased response
uncertainty (e.g., in a go/no-go task; Levy & Wagner,
2011) or inhibitory control (e.g., Aron et al., 2014).
Although our study does not speak to the specific division

of labor between the two hemispheres, it might be an inter-
esting avenue for future research to compare differences
and similarities between the response patterns of LIFG and
RIFG to PC across a variety of tasks. For instance, the RIFG
might be differentially engaged in more passive tasks (e.g.,
eye tracking) versus those that require motor responses
(phonetic categorization), whereas the LIFG might be less

sensitive to task demands that are external to the reso-
lution of PC itself. We suggest that such investigations
might further elucidate the nature of LIFG’s role in pro-
cessing PC.

In summary, our results add important evidence to an
understanding of the functional roles of LIFG and the in-
ferior parietal cortex in sentence comprehension. The
clear dissociation between the temporal regions and
the frontal–parietal regions in processing conversational
versus clear speech is consistent with their respective
roles implicated in the literature of speech perception.
We suggest that elevated responses for clear speech rel-
ative to conversational speech are compatible with the
view that STG regions have graded access to detailed
acoustic–phonetic representations (Scott, Blank, Rosen,
& Wise, 2000), whereas the greater engagement of LIFG
and LIPL is consistent with their roles in encoding ab-
stract category information. In the context of sentence
processing, the notion that LIFG and LIPL are responsible
for resolving PC is also consistent with a view that these
regions may deliver top–down feedback signal to tempo-
ral regions to facilitate acoustic–phonetic analyses of
distorted sound signals (Evans & Davis, 2015; Davis &
Johnsrude, 2003) or to guide perceptual adaptation
(e.g., Sohoglu, Peelle, Carlyon, & Davis, 2012). Impor-
tantly, although fMRI is useful for identifying regions that
are recruited for speech perception processes, a true
confirmation of the proposed role of the LIFG in resolv-
ing phonetic ambiguity awaits confirmation by data from
people with aphasia with LIFG lesions. Taken together,
these findings support the notion that resolution of PC
is inherent to receptive language processing and is not
limited to unusual or exceptional cases.
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Notes

1. We digitally adjusted the length of each sentence to equal
the corresponding mean duration of the two original produc-
tions. In the case where excessive lengthening or shortening
renders unnatural sounding of the sentences, both versions
(clear vs. conversational) of the same sentence were readjusted
and resynthesized such that the lengths were as close as possi-
ble without creating unnatural acoustic artifacts (as judged by
the experimenters). All sentences were highly intelligible and
deemed to be natural by an independent group of listeners, ac-
cording to postexperiment survey questions in a pilot study
(see Stimulus norming section).
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2. In an exploratory analysis, we also tested the possibility that
by-participant variability in difficulty drove activation differences
across participants. To this end, we fitted a mixed effects model
(@3dLME, AFNI): Fixed effects included Condition (clear vs.
conversational) as a within-participant factor and by-participant,
by-condition RT in the behavioral task as a continuous covari-
ate; random effects included by-participant intercept and slope
for RT. This model did not reveal a main effect of the covariate
or an interaction between the covariate and Condition in any
brain regions that survived the cluster level correction for mul-
tiple comparisons.
3. To test the replicability of these effects, a jackknifing pro-
cedure was used in which separate analyses were conducted,
leaving one participant out in succession. All of the clusters re-
ported here except one are robust to this test, emerging in all
combinations of 14 participants. The exception is the STG clus-
ter reported for the clear versus conversational contrast, which
emerged in 5 of 15 simulations, an indicant that this difference
is weaker than the other findings. Notably, at a slightly reduced
threshold ( p < .01, 59 contiguous voxels), the STG cluster
emerged in every simulation, which rules out the possibility
that one outlier participant drives this result.
4. We also asked whether the BOLD signal correlated with trial-
by-trial fluctuation in frequency-weighted ND or LF. No clusters
survived correction for multiple comparisons for frequency-
weighted ND. By-trial measures of LF positively correlated with
activation in LIFG (pars triangularis, x = −47, y = 25, z = 16).
Neither inclusion of LF nor frequency-weighted ND in the model
affected the outcome of the PC analysis.
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